Technology Roadmap July 2011 PhysPAG Technology SAG * [Draft - 07/25/11] Decadal Survey 2010 (New Worlds New Horizons)

	WFIRST	LISA	IXO	Inflation Probe	Fundamental Physics
Science Summary	Study the nature of dark energy via BAO, weak lensing and SnIa, IR survey, census of exoplanets via microlensing	Probe black hole astrophysics & gravity signatures from compact stars, binaries, and supermassive black holes	Conditions of matter accreting onto black holes, extreme physics of neutron stars, chemical enrichment of the Universe	Study the Inflationary Epoch of the Universe by observing the CMB B- mode polarization signal	Precision measurements of space- time istoropy and gravitational effects
Architecture	Single 1.5 M dia. Telescope, with focal plane tiled with HgCdTe (TBD).	Three space craft constellation, each in Keplerian orbit. Sub nm displacement measured by lasers (Michelson interferometer).	Single 2.5 - 3 M grazing incidence 20 M focal length X-ray telescope	High-throughput cooled mm-wave meter-class telescope with large- format polarization-sensitive detector arrays	Individual spacecraft for space-time measurement and gravitational effects. Multiple spacecraft for precision timing of interferometric measurements.
Wavelength	0.4 to 1.7 um (TBD)	Interferometer λ = 1.064 um - gravity wave period 10-10,000 sec.	0.3 to 40 keV	1 - 10 mm	
Telescopes and Optical Elements	Wide FOV, ~1.5-M diameter mirror	Classical optical design Surface roughness < lambda/30, backscatter/ stray light	lightweight, replicated x-ray optics.	High-throughput, light, low-cost,	
		Alignment sensing, Optical truss interferometer, Refocus mechanism		cold mm-wave telescope operating at low backgrounds; Anti-reflection coatings; Polarization modulating optical elements	Coupling of ultra-stable lasers with high-finesse optical cavities for increased stability
	Classic telescope structure - HST heritage	Athermal design with a Temp gradient Dimensional stability: pm/sqrt(Hz) and um lifetime, angular stability < 8nrad	lightweight precision structure		
Detectors & Electronics	HgCdTe CMOS (H4RG?)	Laser: 10yr life, 2W, low noise, fast frequency and power actuators Quadrant detector, low noise, 10yr life, low noise (amplitude and timing) ADC's	X-ray calorimeter central array (~1,000 pixels); 2.5 eV FWHM @ 6 keV, extended array; 10 ev FWHM @ 6 keV. High rate Si detector (APS). High resolution gratings (transmission or reflection)	Large format (1,000 - 10,000 pixels) arrays of CMB polarimeters with noise below the CMB photon noise and excellent control of systematics	Molecular clocks/cavities with 10E-15 precision over orbital period; 10E-17 precission over 1-2 year experiment. Cooled atomic clocks with 10E-18 to 10E-19 precision over 1-2 year experiment.
Coolers & Thermal Control	Passively cooled telescope, actively cooled focalplane?	Low CTE materials, passive thermal shielding, power management for avionics thermal stability	Cryocooler needed to cool detectors and other parts of instruments	Passive Spitzer design plus cooling to 100 mK	Thermal stability/control, less than 10E-8 K variation.
Distributed Space Craft		Spacecraft in separate Keplerian orbits. No formation flying or station-keeping. Low contamination μ -Newton thrusterswith low thrust noise			Applicable as precision timing standard in distributed constellations.

^{*} Derived and updated from 2005 Strategic Roadmap-8 and Universe Roadmap

TRL7-9 TRL 4-6 TRL 1-3

Technology Roadmap July 2011 PhysPAG Technology SAG * [Draft - 07/25/11]

Near Term Push Technologies **

	Near Term Fush Technologies				
	Advanced mm-wave/far-IR Arrays	Next Generation Hard X-ray Obs.	Soft X-ray and EUV	Next generation X-ray timing	Next generation Medium-energy γ– ray Observatory
Science Summary	Enhanced sensitivity or reduced resources for the Inflation Probe; far infrared astrophysics	Hard X-ray (5-600 keV) imaging all sky survey for BHs	Spectroscopy of million degree plasmas in sources and ISM to study composition	EOS of neutron stars, black hole oscillations, and other physics in extreme environments	Signatures of nucleosynthesis in SNR, transients, and other sources; AGN and black hole spectra
Architecture	High-sensitivity, large-format, multi- color focal planes for mm-wave to far-infrared imaging, polarimetry & spectroscopy	Two wide-field (~130 x ~65deg) coded mask telescopes. Full sky ea. ~ 95min	Focusing optics with high resolution spectrometers based on advanced gratings	large(>3m^2) pointed arrays of solid state devices, with collimation to isolate sources	Single platform designs to measure g-ray lines
Wavelength	30 um - 10 mm	5-30 and 10-600keV	5-500 Angstroms	2-80 keV	100 keV - 30 MeV
Telescopes and Optical Elements	Large throughput, cooled mm-wave to far-infrared telescope operating at background limit.	Coded aperture imaging: ~ 5mm thk W & ~ 2.5mm holes; ~0.5mm W & ~0.2mm holes	Gratings, single and multilayer coatings, nano-laminate optics	No optics; source isolation by collimator	Compton telescope on single platform
		~ 5" aspect req. over ~6x~3x~1.5m	Actuators Arcsecond attitude control to	Moderate accuracy pointing of very	
		tel. structures	maintain resolution	large planar array	
Detectors & Electronics	Very large format (> 10 ⁵ pixels) focal plane arrays with background- limited performance and multi-color capability		Photocathodes, micro-channel plates, crossed-grid anodes	>3 m^2 Si (or CZT or CdTe) pixel arrays or hybrid pixels, with low- power ASIC readouts, possibly deployable	Cooled Ge; arrays of Si, CZT or CdTe pixels and ASIC readouts
Coolers & Thermal Control	Cooling to 50 - 300 mK	LHP to radiators for -~30deg (Si) and ~-5deg (CZT) over large areas		Passive cooling of pixel arrays	Active cooling of germanium detectors
Distributed Space Craft			Use low-cost launch vehicles for single payloads with few month mission duration		

^{*} Derived and updated from 2005 Strategic Roadmap-8 and Universe Roadmap

TRL7-9 TRL 4-6 TRL 1-3

^{**} Emerging technologies needed for applications in next decade (near-term push) and beyond (long-term push)

Technology Roadmap July 2011 PhysPAG Technology SAG * [Draft - 07/25/11]

Long Term Push Technologies **

	Bong Term rust			
	Beyond LISA (Big Bang Observer)		Beyond IXO (Gen-X)	Next generation γ–ray Focusing
Science Summary	To directly observe gravitational waves resulting from quantum fluctuations during the inflation of the universe		Observe the first SMBH, study growth and evolutionof SMBHs, study matter at extreme conditions	Signatures of nucleosynthesis in SNR, transients, and other sources
Architecture	Four Michelson interferometers each of three s/c (~12 s/c total), ~50,000 km separation, LISA like	Constellation of at least 2 cold atom differential accelerometers, 10,000 km measurement baseline	16 M (50 M**2 grazing incidence telescope with 60 M focal length	2-platform designs to measure g-ray lines
Wavelength	visible & near IR: gravity waves periods of.~1-10 sec	gravity wave periods 0.01 - 10 Hz	0.1-10 keV	100 keV-3 Mev
	~ three meter precision optics	~ one meter precision optics (1/1000)	Lightweight adjustable opites to achieve 0.1 arcsec. High resolution grating spactrometer	Focusing elements (e.g., Laue lens) on long boom or separage platform
Telescopes and Optical Elements	LISA Heritage	wavefront sensing with cold atoms; large area atom optics	0.1 arcsec adjustable optic	
	LISA Heritage	10 W near IR, narrow line	Extendale optical bench to achieve 60 M focal length	Long booms or formation flying
Detectors & Electronics	Laser interferometer, ~ ~1kWatt laser, gravity reference unit (GRU) with ~100x lower noise	Megapixel ccd camera	Gigapixel X-ray active pixel sensors, magapixel microcalorimeter array	Scintillators, cooled Ge
Coolers & Thermal Control	LISA Heritage	Sun-shield for atom cloud	Cryocooler <100mK with 1 mK stability (IXO Heritage)	Active cooling of germanium detectors
Distributed Space Craft	~12 s/c total ~50,000 km separation, sub-micron position control.	Multi-platform s/c system to support above architecture		2-platform formation flying is one approach

^{*} Derived and updated from 2005 Strategic Roadmap-8 and Universe Roadmap

 $^{^{**} \} Emerging \ technologies \ needed \ for \ applications \ in \ next \ decade \ (near-term \ push) \ and \ beyond \ (long-term \ push)$

	TRL7-9	TRL 4-6	TRL 1-3
--	--------	---------	---------